NONISOTHERMAL EXTRUSION UNDER CONTINUOQUS
SHEAR OF LIQUIDS WITH AN ANOMALOQUS
VISCOSITY CHARACTERISTIC

S. A. Bostandzhiyan, V. I. Boyarchenko, UDC 532.135:536.22
and G. N. Kargapolova

The flow of a liquid with an arbitrary anomalous viscosity —temperature characteristic
through the channel of an extruder screw is analyzed taking account of the circulating
flow, the energy dissipation, and the convective heat transfer.

The isothermal flow of a non-Newtonian liquid through the channel of an extruder screw has been
studied in [1] under conditions of continuous shear. The liquid was assumed to behave according to a
power-law rheological equation. The extruder channel was simulated by two parallel plates, It was pos-
sible to show the effect of the transverse circulating flow of the liquid on the overall flow characteristics
and the extruder performance characteristics, namely the dependence of the productivity on the pressure
head. It is even more important to take into account the transverse circulation when considering the prob-
lem of nonisothermal extrusion of highly viscous liquids. When the transverse circulation is taken into
account, it becomes possible to determine more precisely the dissipation of energy, the dissipative heat-
ing of the extruded mass, and the pressure in the extruder head, and it becomes possible to calculate the
power lost in the extruder which consists largely of dissipative heating of the extruded mass. For this
reason, it will be worthwhile to solve the problem of continuous shear in the liquid under nonisothermal
conditions when determining the thermal and mechanical characteristics of the extrusion process.

A nonisothermal shearing of a2 liquid the rheological behavior of which follows a power law has been
analyzed by Griffith in [2]. That analysis was based on the assumption of complete thermal stabilization
and, therefore, its results are applicable to long screws. Under real conditions there is not sufficient
time for the temperature in the feed zone of the screw to stabilize and the heat transfer is thus effected
mainly through convection.

In this article we analyze the nonisothermal flow of a liquid with an arbitrary anomalous viscosity
~temperature characteristic through the channel of an extruder screw, taking into account the circulating
flow as well as the energy dissipation and the convective heat transfer.

1. We will use a two-dimensional model of the channel and will analyze the motion of the liquid be-
tween two infinite parallel plates (Fig. 1). The distance between the plates is h. When the channel depth is
small in comparison with the width, one may disregard the effect of the screw threads, one may assume
the transverse flow profile to remain unchanged, and one may refer all calculations to unit channel width,
Our apalysis will be confined to the flow within a segment the length L of which corresponds to the Jength
of the feed zone in a screw channel.

Let the velocity v, of the upper plate be resolved into two components along the x and y axes, re-
spectively, and let pressure gradients 9p/0x, 8p/dy act along the same axes but in opposité direections.
Angle ¢ will correspond to the pitch angle of the screw.

At high flow velocities, when the transverse circulation produces a rapid displacement of mass, one
may disregard the temperature variation over the channel depth and assume that it varies only along the

Institute of Chemical Physics, Academy of Sciences of the USSR, Moscow, Translated from In- .
zhenerno~Fizicheskii Zhurnal, Vol. 21, No. 2, pp. 325-333, August, 1971. Original article submitted Sep-
tember 16, 1970.

© 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A
copy of this article is available from the publisher for $15.00.

1045



z / 8 ; 9
/ : — :
5 )/ 5
/ /2(_ 4
| a
/ \ /
Y 0 2
/ g5 I 3
< 5 6 7 /
——— @
LAY
-2 a _ J
0 95 ¢,
Fig. 1 Fig. 2

Fig. 1. Two-dimensional model of the channel of an extruder screw.

Fig. 2. Effect of the heat-transfer coefficient o (cal/cm?- sec - deg) and of the liquid flow rate on the
temperature rise, as a function of the screw channel length. a: 1) ¢ = 0; 2) 2-107%; 3) 2-1072; 4) 0.174;
5) 2-1071; 6) 25 7) «; b: 1) Q =0.427; 2) 0.25; 3) 0.174; 4) 0.073; 5) 0.01. :

x-axis. The temperature at the entrance section at x = 0 will be denoted by T, the ambient temperature
by T,. The heat transfer between the liquid and the surrounding medium proceeds according to Newton's
law with heat-transfer coefficient .

The steady-state flow is laminar. The general form of the rheological equation for a liquid with an
anomalous viscosity characteristic is

Da:kofl(T)fz(H)D‘r . » (1)
Here Dg is the strain rate tensor; D, is the deviator of the stress tensor; and kyf; (T)f, (H) is the reciprocal

of the effective viscosity, 2 function of the temperature and the shear stress intensity; H is expressed in
terms of shear stresses as '

H= VTiz + Tflz. (2)

The flow rate of the liquid is zero across the channel (because of the screw threads) and remains
constant along the channel (law of continuity). Since the properties of this liquid are assumed to depend
on the temperature, the forward and the transverse pressure gradient as well as the velocity profile are
functions of x,

The equations of stress pfopagation are

O,z = Ay, 01,002 = A, (A, = dp/dx, A, = dp/dy). 3
After integration, we have
Ty, = Mgz - 4Gy, T, = Az 1+ AhC,, (4)

where A, is the pressure gradient along the x-axis at x = 0; C; and C, are integration constants (constant
for a given section but different for different sections).

We now introduce the dimensionless quantities:

[ = Z/ﬁ, E=x/L, v, =v,fvy, vy = Uyl Oy = AI/AD" ay = A,/4,. (5)
With (5), we obtain from (1) and @): '

By kAR

3 f1 (T)fz(H) (@& +Cy),

C Uy (6)
T BB ) () @l .

z Yy

Changing to dimensionless varidbles in f; and f,, we can rewrite (6) as
du, Fi(0)

O, _F, () v, _ F1(8) 7
) Fy (G)a§ + Co), 3 y Fy (G)(asf + €. D
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Here ¢ is the dimensionless temperature; A is a certain dimensionless group; G = x/(a1§ + Cp)? + (@l + Cy)2.
The expressions for 4 and A, as well as for the functions Fy and F,, will depend on the specific form of
functions f; and f,. A specific example is considered below.

Equations (7) must be integrated with the following boundary conditions:
0, =0, =0 for {=0; v, =cosg, v,=sing for {=1. (8
Taking the first pair of conditions (8), we have

4 4
» F e ]
o — Lx@ j Fy(G) (@ -+ C)dE, 0, = 17_)5 F, (G)a,t -+ Cy) dt. (9)
' 0 0
Expressions (9) contain the unknown quantities 4, oy, a,, Cy, and C,. These can be determined from
the equation of heat transfer, the second pair of boundary conditions (8), and the condition that the trans-
verse flow rate is zero while the forward flow rate is Q. The expressions for the forward and the trans-

verse flow rate in dimensionless units now become:

1

{
Q = [vdt, Q= [vdL (10)
0

0

Inserting vy and v, into (10) according to (9) yields

o =10® “” g j Fy (G) (@t + Cy) dtd,
4]
4

g (11
1
=00 | S F, (@)agt + C) dLde.
00
Integrating (11) by parts will yield the following expressions for the flow rates:
1
_ _ITG) {' F,(G)at + C) (1 — DL,
E (12)

=18 fF(G) (@t -+ C) (1 — D) &2

0

Satisfying the boundary conditions and also the conditions imposed on the flow rates in both directions, we
arrive at the following system of equations:

1
fi;@ 5 F2(6) (@t + Cdg = cos,

1
sz (G) (@ + Cpdt = sing,
b (13)

s

£0)
n

1
%Q ‘S‘Fz (G) (& + Cy) Ldl = cos 9 — @y,

(9

1
3 F, (G) (af 4 Cy) 4dE = sin g.
0

The last two equations in (13) have been obtained with the aid of the first two.
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We now proceed to the equation of heat transfer. For unit length of the screw channel, this equation
can be written as:
' h
oT du,,

h

1 0v,, )

cp 5}‘ dez = 7 5‘ (sz ‘a—z“ + Tyz FZ—) dz— (X(T'—— TO)‘ (14)
0 0

Interest attaches to the actual temperature rise T — Ty of the liguid and we infroduce into the analysis
a dimensionless temperature rise (T — Tg)/ M, where M is some heating scale factor chosen on the basis
of the relation f; (T). Changing to dimensionless variables, we obtain

1 1

hode o
cpMugh  dB. S’ odt = Mj"_o j‘ [(alg 1c) _é% + (@t + Cy)
5 ¢+

L dg

%] dt— a8 — (T, —T)). (15)
The integral on the left-hand side of Eq. (15) represents the dimensionless forward flow rate and is
equal to Q;. The integral on the right-hand side of (15) can, with the aid of (7) and (13), be written as
1

5 [(alz +C) —ZZ— (@t Cy)
1]

9y

3 ] df = (@, + Cy) cos ¢ + (ay -+ Cp)sin g — a,Q;. (1)

If we denote the dimensionless groups as follows:

_ AL oo al v AL T—Te
- JeoMQ, cpughQ, ’ cpuhMQ,
then the final equation of heat balance and its boundary conditions will be
do .
- % [(@y -+ Cy) cos @ + (a, + Cosing— a;Q,] —ub +,
: - (17)

=0 for £=0.

It is interesting to note the following. The work of internal friction forces in the liquid in the screw
channe] can be calculated in two ways: approximately and exactly. In the first case, the work W per unit
time is defined as the product of the shear stress at the boundary and the corresponding screw velocity. In
the second case, W is expressed as the integral of the product of shear stressesandshear rates over the
entire channel depth (left-hand side of Eq. (16)). The expression (¢; + Cy) cos ¢ + (2, + C,) sin ¢ on the right-
hand side of Eq. (16) is no other than the scalar product of the stress vector and the shear rate vector at
the boundary, i.e., the work of external forces. In this way, as (16) indicates, the value obtained for the
work of viscous forces by the approximate method is too high. The magnitude of this error depends on the
pressure gradient and on the liquid flow rate. Generally, from the right-hand side of (16) one must still
subtract the product 2,Q,, where Q, is the transverse flow rate. Both methods of determining the dissi-
pative forces become equivalent only in the case when the extruder exit is either completely open or com-
pletely shut, i.e., when either the pressure gradient or the flow rate is zero. The maximum divergence
between the two methods occurs at some intermediate mode of extruder operation,

Using the boundary condition, one can rewrite the integral of (17) as
i}

dao
- — =& 18
65‘ %3 [(a1 + Cpeos o+ (@, + Cy)sin ¢ *alQJ —pl+ v (18)

In this way, with a definite value assigned to £, we have now a system of five equations (13) and (18) for
determining the five unknowns ¢, a;, a,, C;, and C,. In other words, the problem of determining the tem-
perature, the pressure gradient, and the velocity profile at every section reduces to solving this system
of five transcendental equations.

Integrating the forward pressure gradient over the channel length, we obtain the total pressure cor-
responding to the pressure difference between extruder entrance and exit:

!

Ap = AL g a,dE. (19)
b
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Analogously we obtain an expression for the total power dissipated on heating the liquid, per unit clearance
width:
1
N = ALk, | (@, + C)cos g + (@, + Cp) sing — a,Q, ] . (20)
b
As has been noted earlier, the quantity A, is the pressure gradient at the entrance section x =0 (£
=0). In order to determine A, it is sufficient to let 9 = 0 and @¢; =1 in Eqgs. (13), where Aj appears im-
plicitly in the A -group, and then to solve (13) for Ay, @y, Cy, and C,.

2. In order to illustrate this theoretical analysis and to explore the effect of various parameters on
the temperature rise of the liquid, we have performed calculations for a specific kind of liquid with a
definite viscosity —temperature characteristic. It was assumed that the rheological behavior of the liquid
could be described by 2 power-law equation with a Reynolds relation between viscosity and temperature. In
this case the expressions for functions f, f;, Fy, and F,, parameter A, and the heating scale factor M be-
come

I—n

n

h(T)zexp[—f;(T—Te)], W) =H ", F,0) = exp,

1—n

A n

F(G)=G ", h=—"r M=—.
kit (44)"

The following values were assigned to the parameters: h = 0.5 ¢m, L =200 cm, ¢ =20°, v, = 20 cm/ sec;
n=04,k =107¢ (cmz/g)i/n-sec‘i,J =4.27-10 g-em/cal, ¢ =1 cal/g-deg, p =1.65 g/cm®, 8 = 0.02
deg™t, Tg = 343°K, T, = 313°K, @; = 0.174, and ¢ =2-107% cal/ cm? - sec - deg.

The system of equations consisting of Eqs. (13) and (18) has been solved numerically on a computer.
The results are shown in Figs, 2 and 3.

In Fig. 2a the dimensionless temperature rise § is shown as a function of the dimensionless channel
length at various values of the heaf-transfer coefficient . Curve 1 corresponds to an adiabatic flow (o
=0). If the channel of the extruder screw is lengthened infinitely, then the temperature rise will increase
infinitely and the slope of the tangent to curve 1 will decrease monotonically toward zero at an infinite dis-
tance from the screw entrance. A decrease of this slope is associzted with a lower intensity of heat genera-
tion, on account of the effective viscosity decreasing with higher temperature,

At values of o different from zero the curves level off, i.e., the temperature rise approaches a cer-
tain finite value, this value becoming lower as o increases If T; < T, then the temperature rise may be-
come negative at sufficiently high values of o (curves 5, 6, 7), i.e., the liquid cools down as it moves
through the channel. Under the extreme condition, when ¢ — =, the flow becomes isothermal: all the heat
generated at any section of the moving liquid is instantaneously carried away outside (curve 7). Thus, the
temperature of the liquid will then be everywhere equal to the ambient temperature.

1t is noteworthy that, if T, < Tg, there is such a value of the heat-transfer coefficient o = o, at
which the maximum temperature rise and, consequently, also the overall temperature rise are zero, i.e.,
at which the temperature of the liguid does not change along the entire channel length (curve 4). This val-
ue of @ = a, can be found from Egs. (13) and (17) by letting ¢ = 0 and d§/d¢ = 0 before solving for o, ay,
ay, Cy, and Gy,

In order to evaluate how the departure of the given liquid from an ideal Newtonian liguid affects the
temperature rise, we have calculated the temperature rises at ¢ =2+ 1073 cal/ cm? - sec - deg, Q =0.2,
and with various values of the power exponent n. The trend of the curves is the same as before; they mono~
tonically approach a maximum level. As n is decreased, the calculated temperature rise of the liquid be-
comes smaller, which can be explained by the lower effective viscosity:

1 L
Begr™= EEXP ['_%(T'_Te):\ H'™ .

All this is valid for pseudoplastic liquids. In the case of dilatant liquids, the temperature rise will increase
as n is made other than unity.
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Fig. 3. Pressure drop AP (kg/cm?) as a function of the flow
rate: isothermal flow (1) and nonisothermal flow (2).

Fig. 4. Comparison between theoretical values and experi-
mental data: AT ¢C) and Ap (kg/ cm?). ‘

In Fig. 2b the effect is shown of various extruder exit conditions on the 4 vs £ relationat ¢ =2.1073
cal /cm?- sec-deg and n = 0.4, Curve 1 corresponds to a completely open exit. As the exit is being shut
@Q; decreasing), the temperature of the mass rises, the curves become steeper and level off sooner. When
the exit is completely shut, there occurs no convective heat transfer and the temperature rise of the mass
becomes the same over the entire channel length. It can be determined from Eqs. (13) and (17) with @
=0and dg/d¢ =0.

The analysis of isothermal extrusion in [1] has established that, when the velocity at the boundary
remains constant (constant rpm of the screw), the pressure gradient and, consequently, the pressure
difference Ap between extruder entrance and exit both increase monotonically as the flow rate decreases
until they reach their maximum values when the exit is completely shut. During nonisothermal extrusion
the flow pattern may be qualitatively different. The curves in Fig. 3 represent the pressure difference Ap
as a function of the flow rate Q; for isothermal extrusion (curve 1) and for nonisothermal extrusion (curve
2). It can be seen here that, at the given parameter values, the pressure difference first increases with a
decreasing flow rate during nonisothermal extrusion, until it reaches its maximum value at some flow
rate, and then continues to decrease. The explanation for this decreasing Ap is that, when the extruder
exit is almost completely shut under certain conditions (high rpm of the screw and high viscosity of the
liquid), the temperature of the mass rises fast and its effective viscosity drops sharply. The result is a
decrease in the local pressure gradients along the major portion of the screw and, therefore, a lower
overall pressure drop.

3. The foregoing analysis was based on the two-dimensional model of an extruder. In order to as-
sess the applicability of the derived formulas for calculating the characteristics of a real extruder, we
have compared the theoretical results with experimental data pertaining to a synthetic-fiber extrusion at
the VNII laboratory (in Kalinin). The data here apply to the acrylonitrile copolymer with methylacrylate in
dimethylformamide. The thermophysical characteristics of this liquid were determined, its rheological
equation of flow was evaluated, and the screw channel was replaced by a two-dimensional model, where-
upon the following values were obtained for the basic parameters: h = 0.285 em, L =30.8 cm, ¢ = 38°, v,
=827 cm/sec, n = 0.477, ky = 0.65 (cm?/g)t/ D sec™!, ¢ = 0.491 cal/g-deg, p =1 g/cmd, B = 0.0137 deg™,
Te = Ty = 295°K, and o = 0.

The temperature rise and the pressure drop (in dimensional units) have been plotted in Fig. 4 as
functions of the flow rate. The test curves are dashed, the theoretical curves are solid Since the adiabatic
flow was assumed in the calculations (@ = 0), the solid curve in Fig. 4a yields higher values. The trend of
both curves is qualitatively the same, Within this given range of flow rates the two curves differ at most by
75% and at least by 28%. The curves tend to converge as the flow rate increases. Considering that the ex-
truder operated here with the exit almost shut (the flow rates in this range amounted to less than 2% of the
maximum possible flow rate), a closer agreement between theoretical and experimental values can be
expected in the intermediate modes of extruder operation. Indeed, additional tests have shown that chang-
ing the flow rate from 15 to 45% maximum will decrease the maximum difference between tested and
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calculated values to 10% at most. Thus, within the range of flow rate variation most often encountered in
practice the agreement is entirely satisfactory.

The trend of the curves in Fig. 4b confirms the validity of our earlier conclusions concerning the
existence of extruder operating modes where a drop in the pressure is observed during a reduction of the
flow rate. The explanation for the theoretical values being consistently higher than the experimental ones
is that the clearance between the screw thread and the extruder case had been disregarded in the theo-
retical calculations. Leakage of liquid through this clearance can, according to tests, considerably lower
the pressure drop along the channel,

The authors express their profound gratitude to the co-workers at the VNIISV L. M. Beder and V. L
Yankov for supplying the experimental data.

NOTATION
X, V, Z are Cartesian coordinates;
h is the depth of the screw channel;
L is the length of the screw channel;
@ is the pitch angle of the screw flight;
) is the velocity of the upper plate;
B8, n, k are rheological constants;
C is the specific heat;
p is the density;
J is the mechanical equivalent of heat;
T is the temperature;
p is the pressure;
Ay, Ay are pressure gradients;
De is the strain rate tensor;
D, is the deviator of the stress tensor;

Txzs Tyz are stress tensor components;
is the heating scale factor;

W is the work;

N is the power;

o is the heat-transfer coefficient;

Q4 is the dimensionless flow rate;

A, Ry My ¥ are dimensionless parameters.
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