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The flow of a liquid with an arbitrary anomalous viscosity-temperature characteristic 
through the channel of an extruder screw is analyzed taking account of the circulating 
flow, the energy dissipation, and the convective heat transfer. 

The i so thermal  flow of a non-Newtouian liquid tbrough the channel of an extruder  screw has been 
studied in [1] under conditions of continuous shear.  The liquid was assumed to behave according to a 
power-law rheological  equation. The extruder  channel was simulated by two parallel  plates. It was pos-  
sible to show the effect of the t r ansve r se  circulat ing flow of the liquid on the overal l  flow charac te r i s t i cs  
and the extruder  per formance  charac te r i s t i c s ,  namely the dependence of the productivity on the p ressure  
head. It is even more  important  to take into account the t r ansve r se  circulat ion when considering the prob- 
lem of nonisothermal  extrusion of highly viscous liquids. When the t r ansver se  circulat ion is taken into 
account, it becomes possible to determine more  prec ise ly  the dissipation of energy,  the dissipative heat-  
ing of the extruded mass ,  and the p ressu re  in the extruder  head, and it becomes possible to calculate the 
power lost in the extruder  which consists  la rge ly  of dissipative heating of the extruded mass .  For  this 
reason,  it will be worthwhile to solve the problem of continuous shear  in the liquid under nonisothermal  
conditions when determining the thermal  and mechanical  charac te r i s t i cs  of the extrusion process .  

A nonisothermal  shear ing of a liquid the rheological  behavior of which follows a power law has been 
analyzed by Griffith in [2]. That analysis  was based on the assumption of complete thermal  stabilization 
and, therefore ,  its resul ts  a re  applicable to long screws.  Under real  conditions there is not sufficient 
t ime for the tempera ture  in the feed zone of the screw to stabilize and the heat t ransfer  is thus effected 
mainly through convection. 

In this ar t ic le  we analyze the nonisothermal  flow of a liquid with an a r b i t r a r y  anomalous v iscos i ty  
- t e m p e r a t u r e  charac te r i s t i c  through the channel of an extruder screw, taking into account the circulating 
flow as well as the energy dissipation and the convective heat t ransfer .  

1. We will use a two-dimensional  model of the channel and will analyze the motion of the liquid be-  
tween two infinite parallel  plates (Fig. 1). The distance between the plates is h. When the channel depth is 
smal l  in compar ison  with the width, one may d is regard  the effect of the sc rew threads,  one may assume 
the t r ansve r se  flow profile to remain  unchanged, and one may re fe r  all calculations to unit channel width. 
Our analysis  will be confined to the flow within a segment the length L of which corresponds  to the length 
of the feed zone in a screw channel. 

Let the velocity v 0 of the upper plate be resolved into two components along the x and y axes,  r e -  
spectively, and let p ressure  gradients  ap/Ox, 0p/3y act  along the same axes but in opposite directions.  
Angle ~ will correspond to the pitch angle of the screw. 

At high flow velocit ies,  when the t r ansve r se  circulat ion produces a rapid displacement of mass ,  one 
may disregard  the tempera ture  var ia t ion over  the channel depth and assume that it var ies  only along the 
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Fig. 1. Two-dimensional  model of the channel of an extruder screw. 

Fig. 2. Effect of the hea t - t r ans fe r  coefficient a ( c a t / c m  2. sec .  deg) and of the liquid flow rate on the 
tempera ture  r i se ,  as a function of the screw channel length, a: 1) a = 0; 2) 2 �9 10-3; 3) 2 �9 10-2; 4) 0.174; 
5) 2 .10-1;  6) 2; 7) ~; b: 1) QI = 0.427; 2) 0.25; 3) 0.174; 4) 0.073; 5) 0.01. 

x-axis.  The tempera ture  at  the entrance section at x = 0 will be denoted by Te, the ambient tempera ture  
by T o . The heat t ransfer  between the liquid and the surrounding medium proceeds according to Newton's 
law with hea t - t r ans fe r  coefficient ~. 

The s teady-s ta te  flow is laminar.  
anomalous v iscos i ty  charac te r i s t ic  is 

The general  fo rm of the rheological  equation for  a liquid with an 

De = kof~ (T) Is (H) D~. (1) 

Here D e is the s t ra in  rate tensor;  D~ is the deviator of the s t r e ss  tensor;  and k0f ~ (T)f2(I-I) is the rec iproca l  
of the effective viscosi ty,  a function of the tempera ture  and the shear  s t r e ss  intensity; H is expressed in 
t e rms  of shear  s t r e s se s  as 

n = V ~ z  + ~z. (2) 

The flow rate  of the liquid is zero  ac ros s  the channel (because of the screw threads) and remains  
constant along the channel (law of continuity). Since the propert ies  of this liquid a re  assumed to depend 
on the temperature ,  the forward and the t r ansver se  p ressu re  gradient as well as the velocity profile a re  
functions of x, 

The equations of s t r e ss  propagation a re  

a ~d a z  = A .  a ~ l a z  = A~ (A~ = @lax, A s = @lay). (3) 

After integration, we have 

x:~ = Alz ~ AohC 1, "cu~ ~ Asz + AohC2, (4) 

where A 0 is the p ressu re  gradient  along the x-axis  at x = 0; C 1 and C 2 are  integration constants (constant 
fo r  a given section but different for  different sections). 

We now introduce the dimensionless quantities: 

= z/h, ~ -~ x/L, vl = v~/Vo, vs = v { v  o, al = A{Ao, as = As/A o. (5) 

With (5), we obtain f rom (1) and (4): 

av___~ = koAoh ~ f, (T) f~ (H) (a~; + CO, 
a~ Vo 

av___.~ ~-. koAo h2 fl  (T) fs (H) (as~ + Cs). 
at vo 

Changing to dimensionless  var iables  in fl and f2, we can rewri te  (6) as 

av, _ F1 (0) F~ (~)(a,; + CO, av: F~ (0) 

(6) 

(7) 
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H e r e  0 is the d imens ion l e s s  t e m p e r a t u r e ;  )~ is a c e r t a i n  d imens ion le s s  group;  O = ~ a t ~  + CI) 2 + (a2~ + C2) 2. 
The e x p r e s s i o n s  fo r  0 and X, as  well  as  fo r  the funct ions F i and F2, will depend on the spec i f i c  f o r m  of 
funct ions  ft and f2. A spec i f i c  example  is  cons ide red  below. 

Equat ions  (7) mus t  be in tegra ted  with the fol lowing boundary  condit ions:  

v l = v  2 = 0  for ~ = 0 ;  v 1 = c o s %  v 2=sinrp for ~ = l .  (8) 

Taking the f i r s t  pa i r  of condit ions (8), we have 

F, (0) {" F~ (O) [" F~ (G)(%~ § C2) d~. v~t = ~ . j  Fz(G) (al~ @ C1) dE, v2 = ~, J 
0 o 

(9) 

Expressions (9) contain the unknown quantities 0, a i, a 2, C I, and C a. These can be determined from 

the equation of heat transfer, the second pair of boundary conditions (8), and the condition that the trans- 

verse flow ra~e is zero while the forward flow rate is Qt. The expressions for the forward and the trans- 

verse flow rate in dimensionless units now become: 

(lO) 
1 1 

Q1 = ,f f)ld~' Q2 = ,I /)2d'~" 
0 0 

Inse r t ing  v i and v 2 into (10) a c c o r d i n g  to (9) y ie lds  

F1 (0) " Ol = - T .  f j Fe(G)(aI~ q-COd~d~, 
o 0 

f l  (0) Q~ = - - ~  ~ .l" F~ (G)(a2~ + C.z)d~d~. 
0 o 

(11) 

,Integrating (11) by pa r t s  will  yield the fol lowing e x p r e s s i o n s  fo r  the flow ra t e s :  
1 

F~ (0) S F~ (G)(at~ -[- CO (1 - -  ~) d~, 
q~ = - - T -  

o (12) 

1 

F @ )  f F~ (G) (a.z~ q- Cz) (1 - -  ~) d~. 
Q~- x "J 

o 

Sat isfying the boundary  condi t ions and a l so  the condi t ions imposed  on the flow r a t e s  in both d i rec t ions ,  we 
a r r i v e  at  the fol lowing s y s t e m  of equat ions:  

1 

F1(O))~ ~ F2 (G) (al~ + COd ~ ~ cos(p, 

0 

I 
F 1~,(0) i F2 (G) (a2~ -}- C2) d~ 

o 
= sin % 

(13) 

1 

F~;~(0) f F2 (G) (a~ + CO ~d~ = 

o 
cos ~p - -  Ol, 

1 
F:t ~,(0) ; F2 (G) (a~ -ff C2) ~d~ 

o 

= sin % 

The last two equations in (13) have been obtained with the aid of the first two. 
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We now proceed to the equation of heat t ransfer .  For  unit length of the screw channel, this equation 
can be wri t ten as: 

h h 

0 0 

In teres t  attaches to the actual tempera ture  r i se  T - T e of the liquid and we introduce into the analysis  
a dimensionless tempera ture  r i se  (T - T e ) / M  , where M is some heating scale factor chosen on the basis 
of the relat ion fl (T). Changing to dimensionless  var iables ,  we obtain 

! I 

cpMvoh . dO_O vld~ = Aohv o [ (ax~ -1-C1) - ~  (a~E + Cs) d E - -  ctM(} - -  a (T e - -  To). (15) 
L d~. ] o; j 

0 0 

The integral  on the left-hand side of Eq. (15) represents  the dimensionless forward flow rate and is 
equal to Q1. The integral on the right-hand side of (15) can, with the aid of (7) and (13), be written as 

I 

; [  0, 0,1 (al~ q- C1) ~ -  q- (as; q- Cs) ~ - j  dE = (a~ q- C~) cos q~ -t- (as + Cs) sin q~ - -  alO ~. (16) 

o 

If we denote the dimensionless groups as follows: 

AoL aL  aL (T O - -  Te) 
X , l i - -  , ' y  , 

JcpMQ1 CpVohQ1 cpvohMQi 

then the final equation of heat balance and its boundary conditions will be 

dO _ • [(al q- C1) cos tp -k (as 4- C=) sin q0-- alQ~] - -  ~xO -I- % 
d~ (17) 

0 ~ 0  for ~ 0 .  

It is interest ing to note the following. The work of internal fr ict ion forces  in the liquid in the screw 
channel can be calculated in two ways: approximately and exactly. In the f i rs t  case, the work W per unit 
t ime is defined as the product of the shear  s t r e ss  at the boundary and thecorresponding screw velocity. In 
the second case, W is expressed as the integral  of the product of shear  s t r e s se s  and shear  ra tes  over the 
entire channel depth (left-hand side of Eq. (16)). The expression (a I + C1) cos ~0 + (a 2 + C2) sin q0 on the r ight -  
hand side of Eq. (16) is no other than the sca lar  product of the s t r e ss  vector  and the shear  rate vec tor  at 
the boundary, i.e., the work of external  forces.  In this way, as (16) indicates, the value obtained for the 
work of viscous forces  by the approximate method is too high�9 The magnitude of this e r r o r  depends on the 
p ressu re  gradient  and on the liquid flow rate�9 Generally,  f rom the right-hand side of (16) one must  still 
subtract  the product a2Q2, where Q2 is the t r ansver se  flow rate. Both methods of determining the d iss i -  
pative forces  become equivalent only in the case when the extruder exit is either completely open or com-  
pletely shut, i.e.,  when either the p ressu re  gradient or the flow rate  is zero. The maximum divergence 
between the two methods occurs  at some intermediate  mode of extruder operation. 

Using the boundary condition, one can rewri te  the integral  of (17) as 
0 

i ao = ~. (is) 
�9 • [(a i q- C1) cos tp q- (a 2 -k C2) sin (p - -  aiQ1] - -  ixO + v 
0 

In this way, with a definite value assigned to ~, we have now a sys tem of five equations (13) and (18) for  
determining the five unknowns O, a t ,  a2, C1, and C 2. In other words, the problem of determining the tern- 
perature ,  the p ressure  gradient,  and the velocity profile at every  section reduces to solving this sys tem 
of five transcendental  equations. 

Integrating the forward p ressu re  gradient over the channel length, we obtain the total p ressure  c o r -  
responding to the p ressure  difference between extruder  entrance and exit: 

[ 

hp = AoL .f a~d~. (19) 
o 
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A n a l o g o u s l y  we  ob t a in  a n  e x p r e s s i o n  f o r  the  t o t a l  power  d i s s i p a t e d  on he a t i ng  the l iquid ,  p e r  uni t  c l e a r a n c e  

width:  
1 

N = AoLhvo .( [(al + C,) cos ~p + (az § Cz) sin 9 - -  a~O~ ] d~. (20) 
0 

As has  been  noted e a r l i e r ,  the  q u a n t i t y  A 0 i s  the p r e s s u r e  g r a d i e n t  a t  the  e n t r a n c e  s e c t i o n  x = 0 (~ 
= 0). In o r d e r  to d e t e r m i n e  A0, i t  i s  su f f i c i en t  to l e t  0 = 0 and a I = 1 in  Eqs .  (13), w h e r e  A 0 a p p e a r s  i m -  
p l i c i t l y  in  the 2 , -g roup ,  and then  to s o l v e  (13) fo r  A0, a0, C1, and C 2. 

2. In o r d e r  to i l l u s t r a t e  t h i s  t h e o r e t i c a l  a n a l y s i s  and t6 e x p l o r e  the e f f ec t  of v a r i o u s  p a r a m e t e r s  on 
the  t e m p e r a t u r e  r i s e  of the  l iqu id ,  we have  p e r f o r m e d  c a l c u l a t i o n s  fo r  a s p e c i f i c  kind of l iquid  wi th  a 
de f in i t e  v i s c o s i t y - t e m p e r a t u r e  c h a r a c t e r i s t i c .  It was  a s s u m e d  that  the  r h e o l o g i c a l  b e h a v i o r  of the  l iquid  
could  be  d e s c r i b e d  by  a p o w e r - l a w  equa t ion  wi th  a R e y n o t d s  r e l a t i o n  b e t w e e n  v i s c o s i t y  and t e m p e r a t u r e .  In 
th i s  c a s e  the  e x p r e s s i o n s  fo r  func t ions  f i ,  f2, F1, and F2, p a r a m e t e r  ~, and the hea t ing  s c a l e  f a c t o r  M b e -  

c o m e  

I - -n  

1 n  l 0 =oxp0 
1--n 

n X _  v 0 M - - - - .  
F 2 ( G )  = G , 1 , 

- 0 
ko h (Aoh) 

The fo l lowing  v a l u e s  w e r e  a s s i g n e d  to the p a r a m e t e r s :  h = 0.5 cm,  L = 200 cm,  q) = 20 ~ v 0 = 20 c m / s e c ;  
n = 0 4,1% = 10 -~ ( cm2/g )  1 / n .  s e c - l , J  = 4 . 2 7 "  104 g .  c m / c a l ,  c = 1 c a l / g ,  deg ,  p = 1.65 g / c m  3, ~ = 0.02 

deg  -1, Te = 343~ To = 313~ Q1 = 0.174, and a = 2 . 1 0  -3 c a l / c m  2 �9 s e c .  deg.  

The s y s t e m  of equa t i ons  Cons i s t ing  of Eqs .  (13) and (18) has  been  so lved  n u m e r i c a l l y  on a c o m p u t e r .  

The r e s u l t s  a r e  shown in  F i g s .  2 and 3. 

in  F ig .  2a the  d i m e n s i o n l e s s  t e m p e r a t u r e  r i s e  0 i s  shown a s  a func t ion  of the  d i m e n s i o n l e s s  channe l  
l eng th  a t  v a r i o u s  v a l u e s  of the  h e a t - t r a n s f e r  c o e f f i c i e n t  cr C u r v e  1 c o r r e s p o n d s  to  a n  a d i a b a t i c  f low (~ 
= 0). If the channe l  of the e x t r u d e r  s c r e w  is  l eng thened  in f in i t e ly ,  then  the t e m p e r a t u r e  r i s e  wi l l  i n c r e a s e  
i n f i n i t e l y  and the s l o p e  of the  t angen t  to c u r v e  i w i l l  d e c r e a s e  m o n o t o n i c a l l y  t oward  z e r o  a t  an  in f in i t e  d i s -  
t a n c e  f r o m  the s c r e w  e n t r a n c e .  A d e c r e a s e  of th is  s l o p e  i s  a s s o c i a t e d  wi th  a l o w e r  i n t e n s i t y  of hea t  g e n e r a -  
t i o n ,  on accoun t  of the  e f f e c t i v e  v i s c o s i t y  d e c r e a s i n g  wi th  h i g h e r  t e m p e r a t u r e .  

At  v a l u e s  of ~ d i f f e r e n t  f r o m  z e r o  the  c u r v e s  l e v e l  off, i . e . ,  the  t e m p e r a t u r e  r i s e  a p p r o a c h e s  a c e r -  
t a i n  f in i t e  v a l u e ,  t h i s  v a l u e  b e c o m i n g  l o w e r  a s  ~ i n c r e a s e s  If T o < Te ,  then  the t e m p e r a t u r e  r i s e  m a y  b e -  
c o m e  n e g a t i v e  a t  s u f f i c i e n t l y  high v a l u e s  of ce ( cu rves  5, 6, 7), i . e . ,  the  l iquid  c o o l s  down a s  i t  m o v e s  
t h rough  the channe l .  Unde r  the e x t r e m e  cond i t ion ,  when  c~ ~ ~,  the f low b e c o m e s  i s o t h e r m a l :  a l l  the hea t  
g e n e r a t e d  a t  a n y  s e c t i o n  of the  mov ing  l iquid i s  i n s t a n t a n e o u s l y  c a r r i e d  a w a y  o u t s i d e  (curve  7). Thus ,  the 
t e m p e r a t u r e  of the  l iquid w i l l  then  be e v e r y w h e r e  equa l  to the a m b i e n t  t e m p e r a t u r e .  

It i s  n o t e w o r t h y  that ,  i f  T O < Te ,  t h e r e  i s  such  a v a l u e  of the  h e a t - t r a n s f e r  coe f f i c i en t  c~ = ~ ,  a t  
wh ich  the  m a x i m u m  t e m p e r a t u r e  r i s e  and,  c o n s e q u e n t l y ,  a l s o  the  o v e r a l l  t e m p e r a t u r e  r i s e  a r e  z e r o ,  i . e . ,  
a t  which  the t e m p e r a t u r e  of the  l iquid  does  not change  a long  the e n t i r e  channe l  l ength  (curve  4). Th i s  v a l -  
u e  of a = c~. can  be  found f r o m  Eqs .  (13) and (17) by  l e t t ing  0 = 0 and dO/d~ = 0 b e f o r e  so lv ing  fo r  ~ ,  as, 

a2, C1, and C 2. 

In o r d e r  to  e v a l u a t e  how the  d e p a r t u r e  of the  g iven  l iquid  f r o m  a n  i d e a l  Newton ian  l iquid a f f e c t s  the  
t e m p e r a t u r e  r i s e ,  we have  c a l c u l a t e d  the  t e m p e r a t u r e  r i s e s  a t  c~ = 2 �9 10 -~ c a l / c m  2 �9 s e c .  deg,  Q1 = 0.2, 
and  wi th  v a r i o u s  v a l u e s  of the  power  exponen t  n. The  t r e n d  of the c u r v e s  is  the  s a m e  a s  b e f o r e ;  t hey  m o n o -  
t o n i c a l l y  a p p r o a c h  a m a x i m u m  leve l .  As  n i s  d e c r e a s e d ,  the  c a l c u l a t e d  t e m p e r a t u r e  r i s e  of the l iquid b e -  
c o m e s  s m a l l e r ,  wh ich  can  be exp l a ined  by  the l ower  e f f ec t i ve  v i s c o s i t y :  

- -  exp - -  - -  (T - -  Te ) H - - ~ .  ~teff = k 0 n 

A l l  th i s  i s  v a l i d  f o r  p s e u d o p l a s t i c  l i qu ids .  In the  e a s e  of d i l a t an t  l i qu ids ,  the  t e m p e r a t u r e  r i s e  wi l l  i n c r e a s e  
a s  n i s  m a d e  o t h e r  than  unity.  
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Fig. 3. P r e s s u r e  drop AP (kg /cm 2) as a function of the flow 
rate:  i so thermal  flow (1) and nonisothermal  flow (2). 

Fig. 4. Comparison between theoret ical  values and exper i -  
mental data: AT (~C) and Ap (kg/cm2). 

In Fig. 2b the effect is shown of various extruder  exit conditions on the 0 vs ~ relat ion at ~ = 2 �9 10 -3 
c a l / c m  2. sec .  deg and n = 0.4. Curve 1 corresponds  to a completely open exit. As the exit is being shut 
{Qi decreasing),  the tempera ture  of the mass  r i ses ,  the curves become s teeper  and level off sooner.  When 
the exit is completely shut, there  occurs  no convective heat t ransfer  and the tempera ture  r i se  of the mass  
becomes the same over the entire channel length. It can be determined f rom Eqs. (13) and (17) with Qi 
= 0 and d~/d~ = 0. 

The analysis  of i so the rma l  extrusion in [1] has established that, when the velocity at the boundary 
remains  constant (constant rpm of the screw), the p ressu re  gradient  and, consequently, the p ressu re  
difference Ap between extruder  entrance and exit both increase  monotonically as  the flow rate  decreases  
until they reach  their maximum values when the exit is completely shut. During nonisothermal extrusion 
the flow pattern may be qualitatively different. The curves  in Fig. 3 represen t  the p ressure  difference Ap 
as a function of the flow rate  Qt for i so thermal  extrusion {curve 1) and for nonisothermal extrusion (curve 
2). It can be seen here  that, at the given parameter  values,  the p ressure  difference f i rs t  increases  with a 
decreas ing flow rate during nonisothermal extrusion, until it reaches  its maximum value at some flow 
rate,  and then continues to decrease .  The explanation for this decreas ing Ap is that, when the extruder 
exit is a lmost  completely shut under cer ta in  conditions (high rpm of the sc rew and high v iscos i ty  of the 
liquid), the tempera ture  of the mass  r i ses  fast  and its effective v iscos i ty  drops sharply. The resul t  i s  a 
decrease  in the local p re s su re  gradients along the major  portion of the screw and, therefore,  a lower 
overal l  p ressu re  drop. 

3. The foregoing analysis  was based on the two-dimensional  model of an extruder.  Iff order  to a s -  
sess  the applicability of the derived formulas  for  calculating the charac te r i s t i cs  of a real  extruder,  we 
have compared the theoret ical  resul ts  with experimental  data pertaining to a synthet ic-f iber  extrusion at 
the VNII labora tory  {in Kalinin). The data here apply to the acryloni t r i le  copolymer with methylacrylate  in 
dimethylformamide.  The thermophysical  charac te r i s t i cs  of this liquid were determined,  its rheologieal 
equation of flow was evaluated, and the screw channel was replaced by a two-dimensional  model, where- '  
upon the following values were obtained for  the basic parameters :  h = 0.285 cm, L = 30.8 cm, q~ = 38 ~ v 0 
= 827 c m / s e c ,  n = 0.477, k 0 = 0.65 (cm2/g) 1 /n  sec -1, c = 0.491 c a l / g . d e g ,  p = i g / c m  3, fl = 0.0137 deg -1, 
T e = T  0=295~ a n d ~  =0. 

The temperature r i se  and the p ressu re  drop (in dimensional units) have been plotted in Fig. 4 as 
functions of the flow rate.  The test  curves a re  dashed, the theoret ical  curves a re  solid Since the adiabatic 
flow was assumed in the calculations (a = 0), the solid curve in Fig. 4a yields higher values. The trend of 
both curves  is qualitatively the same. Within this given range of flow rates  the two curves  differ at  most  by 
75% and at least  by 28%. The curves  tend to converge as the flow rate increases .  Considering that the ex- 
t ruder  operated here  with the exit a lmos t  shut (the flow ra tes  in this range amounted to less than 2% of the 
maximum possible flow rate),  a c loser  agreement  between theoret ical  and experimental  values can be 
expected in the intermediate  modes of extruder operation. Indeed, additional tests have shown that chang- 
ing the flow rate f rom 15 to 45% maximum will dec rease  the maximum difference between tested and 
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calculated values to 10% at most. Thus, within the range of flow rate variation most often encountered in 
practice the agreement is entirely satisfactory. 

The trend of the curves in Fig. 4b confirms the validity of our earlier conclusions concerning the 
existence of extruder operating modes where a drop in the pressure is observed during a reduction of the 
flow rate. The explanation for the theoretical values being consistently higher than the experimental ones 
is that the clearance between the screw thread and the extruder case had been disregarded in the theo- 
retical calculations. Leakage of liquid through this clearance can, according to tests, considerably lower 
the pressure drop along the channel. 

The authors express their profound gratitude to the co-workers at the VNIISV L. M. Beder and V. I. 

Yankov for supplying the experimental data. 
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NOTATION 

are Cartesian coordinates; 
is the depth of the screw channel; 
is the length of the screw channel; 
is the pitch angle of the screw flight; 
is the velocity of the upper plate; 
are rheological constants; 
is the specific heat; 
is the density; 
is the mechanical equivalent of heat; 
is the temperature; 
is the pressure; 
are pressure gradients; 
is the strain rate tensor; 
is the deviator of the stress tensor; 
are stress tensor components; 
is the heating scale factor; 
is the work; 
is the power; 
is the heat-transfer coefficient; 
is the dimensionless flow rate; 
are dimensionless parameters. 

1. 

2. 
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